GoogleLinkedinTwitter FaceBook Del.icio.us

        

Share :

Ley de coulomb


El Trabajo científico


Ley de coulomb


Principìos de electricidad


Guías de trabajo de 2° año


Guías de trabajo


Coulomb desarrolló la balanza de torsióncon la que determinó las propiedades de la fuerza electrostática. Esteinstrumento consiste en una barra que cuelga de una fibra capaz detorcerse. Si la barra gira, la fibra tiende a regresarla a su posiciónoriginal, con lo que conociendo la fuerza de torsión que la fibraejerce sobre la barra, se puede determinar la fuerza ejercida en unpunto de la barra.

Variación de la Fuerza de Coulomb en función de la distancia.

En la barra de la balanza, Coulomb colocó una pequeña esfera cargaday a continuación, a diferentes distancias, posicionó otra esferatambién cargada. Luego midió la fuerza entre ellas observando el ánguloque giraba la barra.

Dichas mediciones permitieron determinar que:

  • La fuerza de interacción entre dos cargas q_1 \,\! y q_2 \,\!duplica su magnitud si alguna de las cargas dobla su valor, la triplicasi alguna de las cargas aumenta su valor en un factor de tres, y asísucesivamente. Concluyó entonces que el valor de la fuerza eraproporcional al producto de las cargas:
F \,\! \propto \,\!  q_1 \,\!     y     F \,\! \propto \,\!  q_2 \,\!

en consecuencia:

 F \,\! \propto \,\!  q_1 q_2 \,\!
  • Si la distancia entre las cargas es r \,\!,al duplicarla, la fuerza de interacción disminuye en un factor de 4(2²); al triplicarla, disminuye en un factor de 9 (3²) y alcuadriplicar r \,\!,la fuerza entre cargas disminuye en un factor de 16 (4²). Enconsecuencia, la fuerza de interacción entre dos cargas puntuales, esinversamente proporcional al cuadrado de la distancia:
F \,\! \propto \,\! 1\over r^2  \,\!

Asociando ambas relaciones:

F \,\! \propto \,\! q_1q_2\over r^2  \,\!

Finalmente, se introduce una constante de proporcionalidad para transformar la relación anterior en una igualdad:

 F = \kappa \frac{q_1 q_2}{r^2}  \,\!

Enunciado de la ley [editar]

La ley de Coulomb es válida sólo en condiciones estacionarias, esdecir, cuando no hay movimiento de las cargas o, como aproximacióncuando el movimiento se realiza a velocidades bajas y en trayectoriasrectilíneas uniformes. Es por ello es llamada fuerza electrostática.

En términos matemáticos, la magnitud F \,\! de la fuerza que cada una de las dos cargas puntuales q_1 \,\! y q_2 \,\! ejerce sobre la otra separadas por una distancia d \,\! se expresa como:

F = \kappa \frac{\left|q_1\right| \left|q_2\right|}{d^2} \,\!

Dadas dos cargas puntuales q_1 \,\! y q_2 \,\! separadas una distancia d \,\! en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud esta dada por:

 F = \kappa \frac{q_1 q_2}{d^2} \,\!

La Ley de Coulomb se expresa mejor con magnitudes vectoriales:

 \vec F = \frac{1}{4 \pi \varepsilon}\frac{q_1 \cdot q_2}{d^2} \vec{u}_d = \frac{1}{4 \pi \epsilon} q_1 \cdot q_2 \frac{(\vec{d_2} -\vec{d_1})}{|\vec{d}_2-\vec{d}_1|^3} \,\!

donde \vec{u}_d \,\! es un vector unitario que va en la dirección de la recta que une las cargas, siendo su sentido desde la carga que produce la fuerza hacia la carga que la experimenta.

El exponente (de la distancia: d) de la Ley de Coulomb es, hastadonde se sabe hoy en día, exactamente 2. Experimentalmente se sabe que,si el exponente fuera de la forma (2+ \delta)\,\!, entonces \left | \delta \right |< 10^{-16} \,\!.

Representación gráfica de la Ley de Coulomb para dos cargas del mismo signo.

Obsérvese que esto satisface la tercera de la ley de Newton debido a que implica que fuerzas de igual magnitud actúan sobre q_1 \,\! y q_2 \,\!.La ley de Coulomb es una ecuación vectorial e incluye el hecho de quela fuerza actúa a lo largo de la línea de unión entre las cargas.

Constante de Coulomb


Este sitio web fue construido utilizando herramientas GeneSitios.com